Math 245B Lecture 7 Notes

Daniel Raban

January 23, 2019

1 The Arzelà-Ascoli Theorem

1.1 Compactness of subsets of C(X)

Last time, we proved Tychonoff's theorem, which says that a product of compact spaces is compact. Really, we want to think about $\prod_{\alpha \in A} X_{\alpha}$ as the set of functions $f : A \to \bigcup_{\alpha} X_{\alpha}$ sending $\alpha \mapsto x_{\alpha}$, where $x_{\alpha} \in X_{\alpha}$ for all α . in analysis, finding compactness of spaces and subspaces of functions is very useful and important.

For this lecture, we will assume X is a compact, Hausdorff space. We will let $C(X) = C(X, \mathbb{C})$ (although everything here is true for \mathbb{R} instead of \mathbb{C} . We also denote

$$\rho_u(f,g) = \|f - g\|_u = \sup_{x \in X} |f(x) - g(x)|.$$

We know that $(C(X), \rho_u)$ is a complete metric space. This is a big space. We will identify its compact subspaces. Let $\mathcal{F} \subseteq C(X)$. When is it closed and totally bounded? The point of this theorem is to give conditions for totally boundedness.

Definition 1.1. A family \mathcal{F} is **equicontinuous at** $x \in X$ if for any $\varepsilon > 0$, there exists a neighborhood $U \ni x$ such that $|f(x) - f(y)| < \varepsilon$ for all $y \in U$ and for all $f \in \mathcal{F}$. \mathcal{F} is **equicontinuous** if it is equicontinuous at every point.

This is the same neighborhood U for all $f \in \mathcal{F}$.

Definition 1.2. A family $\mathcal{F} \subseteq C(X)$ is **pointwise bounded** if the set $\{f(x) : f \in \mathcal{F}\}$ is bounded for all $x \in X$.

1.2 Statement and proof of the theorem

Theorem 1.1 (Arzelà-Ascoli). A subspace \mathcal{F} is totally bounded if and only if it is equicontinuous and pointwise bounded. Moreover, $\overline{\mathcal{F}}$ is compact in $(C(X), \rho_u)$.

Example 1.1. If X has a compact metric ρ , then \mathcal{F} is equicontinuous if for all $x \in$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ for all y such that $\rho(x, y) < \delta$ (for all $f \in \mathcal{F}$).

Example 1.2. Any finite subset of C(X) is equicontinuous.

Example 1.3. Let X = [-1, 1]. Let \mathcal{F} be the sequence of functions which are 0 on [-1, 0] and increase continuously to 1 (with steeper and steeper slope). This sequence converges to $\mathbb{1}_{(0,1]}$, which is not in \mathcal{F} . This family is not totally bounded, and the ever-increasing steepness at 0 makes this family not equicontinuous.

We will only prove one direction of the equivalence.¹

Proof. (\Leftarrow): Let $\varepsilon > 0$. We will cover \mathcal{F} with finitely many subsets of ρ_u -diameter $< 4\varepsilon$. For every $x \in X$, there exists a neighborhood $U \ni x$ such that $|f(y) - f(x)| < \varepsilon$ for all $y \in U_x$ and $f \in \mathcal{F}$. By compactness, there exists a finite subcover $X = U_{x_1} \cup \cdots \cup U_{x_m}$. For each $i = 1, \ldots, m$, the set $\{f(x_i) : f \in \mathcal{F}\}$ is bounded. So $\bigcup_{i=1}^m \{f(x_i) : f \in \mathcal{F}\}$ is bounded. That is, there exists a finite $B \subseteq \mathbb{C}$ such that for all i and $f \in \mathcal{F}$, there exists a $z \in B$ such that $|f(x_i) - z| < \varepsilon$.

For each $\varphi \in B^m$, define $\mathcal{F}_{\varphi} = \{f \in \mathcal{F} : |f(x_i) - \varphi(x_i)| < \varepsilon \ \forall i = 1, ..., m\}$. To finish, condier $f, g \in \mathcal{F}_{\varphi}$. We know that $|f(x_i) - g(x_i)| < 2\varepsilon$ for a;; i = 1, ..., n. For any other $y \in X$, we have $y \in U_{x_i}$ for some i, so

$$|f(x) - f(y)| \le |f(x) - f(x_i)| + |f(x_i) - g(x_i)| + |g(x_i) - g(y)|$$

$$< \varepsilon + 2\varepsilon + \varepsilon$$

$$= 4\varepsilon.$$

So $||f - g||_u \leq 4\varepsilon$ for all $f, g \in \mathcal{F}_{\varphi}$. This gives total boundedness.

Remark 1.1. $\overline{\mathcal{F}}$ is compact because it is still totally bounded. In general, closure preseves total boundedness.

1.3 Alternate proof of Arzelà-Ascoli

Here is an alternative proof.

Proof. (\Leftarrow): Let \mathcal{F} be equicontinuous and pointwise bounded. Let D_x be a closed, bounded disc in the complex plane containing $\{f(x) : f \in \mathcal{F}\}$. We can think of $\mathcal{F} \subseteq \prod_{x \in X} D_x$, which is a compact product by Tychonoff's theorem. The following lemma (left as an exercise) completes the proof.

Lemma 1.1. Let \mathcal{F} be closed and equicontinuous in C(X). Then

- 1. Restricted to \mathcal{F} , the uniform topology on C(X) and the product topology on $\prod_{x \in X} D_x$ are the same.
- 2. \mathcal{F} is also closed as a subset of $\prod_{x \in X} D_x$.

¹Professor Austin says that the other direction is not very useful, in his experience.

1.4 Arzelà-Ascoli in \mathbb{R}^n

In general, we can extend Arzelà-Ascoli to spaces that are not compact but made of countably many compact pieces. Let's see how this works in \mathbb{R}^n . Let $(f_n)_{n \in \mathbb{N}} \subseteq C(\mathbb{R}^n)$ and $f \in C(\mathbb{R}^n)$. These are not even necessarily bounded. What is the appropriate notion of convergence for them?

Definition 1.3. The sequence $f_n \to f$ locally uniformly if $f_n|_K \to f|_K$ uniformly for all bounded $K \subseteq \mathbb{R}^n$.

Theorem 1.2. If $(f_n)_{n \in \mathbb{N}} \subseteq C(\mathbb{R}^n)$ is equicontinuous and pointwise bounded, then there exist $f \in C(\mathbb{R}^n)$ and a subsequence $f_{n(k)} \to f$ locally uniformly as $k \to \infty$.

Proof. For any $r \in \mathbb{N}$, Arzelà-Ascoli gives that $\{f_n : \overline{B_r(0)}\}$ is totally bounded in $C(\overline{B_r(0)})$. By a diagonal argument, there exists a subsequence $(f_{n(k)})_{k=1}^{\infty}$ such that $f_{n(k)}|_{\overline{B_r(0)}}$ converges uniformly to some $f^{(r)} \in C(\overline{B_r(0)})$. By the uniqueness of limits, we have $f_{\overline{B_r(0)}}^{(r)} = f^{(r)}$ for all r < s. So there exists a function $f : \mathbb{R}^n \to \mathbb{C}$ such that $f^{(r)} = f|_{\overline{B_r(0)}}$ for all r and $f \in C(\mathbb{R}^n)$. This is the same thing as locally uniform convergence $f_{n(k)} \to f$.

Remark 1.2. We can think of this proof as Arzelà-Ascoli applied to the image of \mathcal{F} in $\prod_{r=1}^{\infty} C(\overline{B_r(0)})$.

Example 1.4. In $BC(\mathbb{R})$, consider $\{f_{\alpha}(x) = e^{i\alpha} : 1 \leq \alpha \leq 2\}$. This is pointwise bounded, and it is uniformly equicontinuous by the mean value theorem. Let $1 \leq \alpha < \beta \leq 2$. Then $\rho_u(f_{\alpha}, f_{\beta}) = 2$.